Example 21 - Coal Seam Mining#

This example will show how to convert the geological map below using GemGIS to a GemPy model. This example is based on digitized data. The area is 3727 m wide (W-E extent) and 2596 m high (N-S extent). The vertical model extent varies between 2400 m and 2475 m. The model represents a coal seam that is outcropping at the surface and was encountered in boreholes at depth.

The map has been georeferenced with QGIS. The stratigraphic boundaries were digitized in QGIS. Strikes lines were digitized in QGIS as well and will be used to calculate orientations for the GemPy model. The contour lines were also digitized and will be interpolated with GemGIS to create a topography for the model.

Map Source: An Introduction to Geological Structures and Maps by G.M. Bennison

[1]:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('../images/cover_example21.png')
plt.figure(figsize=(10, 10))
imgplot = plt.imshow(img)
plt.axis('off')
plt.tight_layout()
../../_images/getting_started_example_example21_2_0.png

Licensing#

Computational Geosciences and Reservoir Engineering, RWTH Aachen University, Authors: Alexander Juestel. For more information contact: alexander.juestel(at)rwth-aachen.de

This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Import GemGIS#

If you have installed GemGIS via pip and conda, you can import GemGIS like any other package. If you have downloaded the repository, append the path to the directory where the GemGIS repository is stored and then import GemGIS.

[2]:
import warnings
warnings.filterwarnings("ignore")
import gemgis as gg

Importing Libraries and loading Data#

All remaining packages can be loaded in order to prepare the data and to construct the model. The example data is downloaded from an external server using pooch. It will be stored in a data folder in the same directory where this notebook is stored.

[3]:
import geopandas as gpd
import rasterio
[4]:
file_path = 'data/example21/'
gg.download_gemgis_data.download_tutorial_data(filename="example21_coal_seam_mining.zip", dirpath=file_path)
Downloading file 'example21_coal_seam_mining.zip' from 'https://rwth-aachen.sciebo.de/s/AfXRsZywYDbUF34/download?path=%2Fexample21_coal_seam_mining.zip' to 'C:\Users\ale93371\Documents\gemgis\docs\getting_started\example\data\example21'.

Creating Digital Elevation Model from Contour Lines#

The digital elevation model (DEM) will be created by interpolating contour lines digitized from the georeferenced map using the SciPy Radial Basis Function interpolation wrapped in GemGIS. The respective function used for that is gg.vector.interpolate_raster().

[5]:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('../images/dem_example21.png')
plt.figure(figsize=(10, 10))
imgplot = plt.imshow(img)
plt.axis('off')
plt.tight_layout()
../../_images/getting_started_example_example21_10_0.png
[6]:
topo = gpd.read_file(file_path + 'topo21.shp')
topo['Z'] = topo['Z']*0.3048
topo.head()
[6]:
id Z geometry
0 None 2423.16 LINESTRING (8.426 1648.306, 35.717 1675.998, 6...
1 None 2426.21 LINESTRING (5.215 1950.921, 79.464 1983.831, 1...
2 None 2429.26 LINESTRING (16.854 2215.007, 64.213 2217.014, ...
3 None 2432.30 LINESTRING (24.179 2563.075, 70.835 2554.346, ...
4 None 2432.30 LINESTRING (957.912 2594.380, 1031.960 2594.98...

Interpolating the contour lines#

[7]:
topo_raster = gg.vector.interpolate_raster(gdf=topo, value='Z', method='rbf', res=10)

Plotting the raster#

[8]:
import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import make_axes_locatable

fix, ax = plt.subplots(1, figsize=(10, 10))
topo.plot(ax=ax, aspect='equal', column='Z', cmap='gist_earth')
im = ax.imshow(topo_raster, origin='lower', extent=[0, 3727, 0, 2596], cmap='gist_earth', clim=[2400, 2500])
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = plt.colorbar(im, cax=cax)
cbar.set_label('Altitude [m]')
ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_xlim(0, 3727)
ax.set_ylim(0, 2596)
[8]:
(0.0, 2596.0)
../../_images/getting_started_example_example21_15_1.png

Saving the raster to disc#

After the interpolation of the contour lines, the raster is saved to disc using gg.raster.save_as_tiff(). The function will not be executed as a raster is already provided with the example data.

gg.raster.save_as_tiff(raster=topo_raster, path=file_path + 'raster21.tif', extent=[0, 3727, 0, 2596], crs='EPSG:4326', overwrite_file=True)

Opening Raster#

The previously computed and saved raster can now be opened using rasterio.

[9]:
topo_raster = rasterio.open(file_path + 'raster21.tif')

Interface Points of stratigraphic boundaries#

The interface points will be extracted from LineStrings digitized from the georeferenced map using QGIS. It is important to provide a formation name for each layer boundary. The vertical position of the interface point will be extracted from the digital elevation model using the GemGIS function gg.vector.extract_xyz(). The resulting GeoDataFrame now contains single points including the information about the respective formation.

[10]:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('../images/interfaces_example21.png')
plt.figure(figsize=(10, 10))
imgplot = plt.imshow(img)
plt.axis('off')
plt.tight_layout()
../../_images/getting_started_example_example21_21_0.png
[11]:
interfaces = gpd.read_file(file_path + 'interfaces21.shp')
interfaces.head()
[11]:
id formation geometry
0 None Coal LINESTRING (53.076 2181.695, 122.910 2160.023,...
1 None Coal LINESTRING (1107.213 927.687, 1168.017 852.435...
2 None Fault LINESTRING (523.855 319.647, 578.639 399.114, ...

Extracting Z coordinate from Digital Elevation Model#

[12]:
interfaces_coords = gg.vector.extract_xyz(gdf=interfaces, dem=topo_raster)
interfaces_coords = interfaces_coords.sort_values(by='formation', ascending=False)
interfaces_coords.head()
[12]:
formation geometry X Y Z
87 Fault POINT (2604.437 2592.875) 2604.44 2592.88 2458.99
73 Fault POINT (1608.696 1614.592) 1608.70 1614.59 2442.26
59 Fault POINT (523.855 319.647) 523.86 319.65 2422.09
60 Fault POINT (578.639 399.114) 578.64 399.11 2424.08
61 Fault POINT (657.504 507.477) 657.50 507.48 2425.55
[13]:
boreholes = gpd.read_file(file_path + 'points21.shp')
boreholes = gg.vector.extract_xy(gdf=boreholes)
boreholes['Z'] = boreholes['Z']*0.3048
boreholes.head()
[13]:
formation Z geometry X Y
0 CoalTop 2421.64 POINT (627.403 2088.984) 627.40 2088.98
1 CoalTop 2426.21 POINT (53.076 2493.542) 53.08 2493.54
2 CoalTop 2416.45 POINT (1033.164 2386.382) 1033.16 2386.38
3 CoalTop 2414.02 POINT (1252.300 2547.724) 1252.30 2547.72
4 CoalTop 2425.29 POINT (916.975 1506.229) 916.97 1506.23
[14]:
import pandas as pd
interfaces_coords = pd.concat([interfaces_coords, boreholes])
interfaces_coords = interfaces_coords[interfaces_coords['formation'].isin(['Fault', 'CoalTop', 'Coal'])].reset_index()
interfaces_coords
[14]:
index formation geometry X Y Z
0 87 Fault POINT (2604.437 2592.875) 2604.44 2592.88 2458.99
1 73 Fault POINT (1608.696 1614.592) 1608.70 1614.59 2442.26
2 59 Fault POINT (523.855 319.647) 523.86 319.65 2422.09
3 60 Fault POINT (578.639 399.114) 578.64 399.11 2424.08
4 61 Fault POINT (657.504 507.477) 657.50 507.48 2425.55
... ... ... ... ... ... ...
127 39 Coal POINT (3204.651 1400.273) 3204.65 1400.27 2416.45
128 40 Coal POINT (3350.340 1792.790) 3350.34 1792.79 2411.88
129 41 Coal POINT (3423.787 1996.273) 3423.79 1996.27 2409.75
130 42 Coal POINT (3520.110 293.760) 3520.11 293.76 2429.87
131 43 Coal POINT (3673.023 733.235) 3673.02 733.23 2424.68

132 rows × 6 columns

Plotting the Interface Points#

[15]:
fig, ax = plt.subplots(1, figsize=(10, 10))

interfaces.plot(ax=ax, column='formation', legend=True, aspect='equal')
interfaces_coords.plot(ax=ax, column='formation', legend=True, aspect='equal')
plt.grid()
ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_xlim(0, 3727)
ax.set_ylim(0, 2596)
[15]:
(0.0, 2596.0)
../../_images/getting_started_example_example21_28_1.png

Orientations from Strike Lines#

Strike lines connect outcropping stratigraphic boundaries (interfaces) of the same altitude. In other words: the intersections between topographic contours and stratigraphic boundaries at the surface. The height difference and the horizontal difference between two digitized lines is used to calculate the dip and azimuth and hence an orientation that is necessary for GemPy. In order to calculate the orientations, each set of strikes lines/LineStrings for one formation must be given an id number next to the altitude of the strike line. The id field is already predefined in QGIS. The strike line with the lowest altitude gets the id number 1, the strike line with the highest altitude the the number according to the number of digitized strike lines. It is currently recommended to use one set of strike lines for each structural element of one formation as illustrated.

[16]:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
img = mpimg.imread('../images/orientations_example21.png')
plt.figure(figsize=(10, 10))
imgplot = plt.imshow(img)
plt.axis('off')
plt.tight_layout()
../../_images/getting_started_example_example21_30_0.png
[17]:
strikes = gpd.read_file(file_path + 'strikes21.shp')
strikes['Z'] = strikes['Z']*0.3048
strikes.head()
[17]:
id formation Z geometry
0 1 Coal1 2426.21 LINESTRING (335.423 2099.821, 499.173 1840.952)
1 2 Coal1 2429.26 LINESTRING (564.191 1250.972, 3.108 2216.613)
2 2 Coal2 2432.30 LINESTRING (1619.532 600.790, 2945.181 207.069)
3 1 Coal2 2429.26 LINESTRING (2364.833 540.588, 2570.724 477.978)
[18]:
orientations_fault = gpd.read_file(file_path + 'orientations21_fault.shp')
orientations_fault = gg.vector.extract_xyz(gdf=orientations_fault, dem=topo_raster)
orientations_fault
[18]:
formation dip azimuth polarity geometry X Y Z
0 Fault 60.00 305.00 1.00 POINT (670.146 526.140) 670.15 526.14 2425.71
1 Fault 60.00 305.00 1.00 POINT (1410.631 1387.029) 1410.63 1387.03 2439.39
2 Fault 60.00 305.00 1.00 POINT (2034.324 2095.005) 2034.32 2095.00 2447.71

Calculate Orientations for each formation#

[19]:
orientations_coal1 = gg.vector.calculate_orientations_from_strike_lines(gdf=strikes[strikes['formation'] == 'Coal1'].sort_values(by='Z', ascending=True).reset_index())
orientations_coal1
[19]:
dip azimuth Z geometry polarity formation X Y
0 0.76 59.69 2427.73 POINT (350.474 1852.089) 1.00 Coal1 350.47 1852.09
[20]:
orientations_coal2 = gg.vector.calculate_orientations_from_strike_lines(gdf=strikes[strikes['formation'] == 'Coal2'].sort_values(by='Z', ascending=True).reset_index())
orientations_coal2
[20]:
dip azimuth Z geometry polarity formation X Y
0 1.14 16.55 2430.78 POINT (2375.067 456.607) 1.00 Coal2 2375.07 456.61

Merging Orientations#

[21]:
import pandas as pd
orientations = pd.concat([orientations_coal1, orientations_coal2, orientations_fault]).reset_index()
orientations['formation'] = ['Coal', 'Coal', 'Fault', 'Fault', 'Fault']
orientations = orientations[orientations['formation'].isin(['Coal', 'Fault'])]
orientations
[21]:
index dip azimuth Z geometry polarity formation X Y
0 0 0.76 59.69 2427.73 POINT (350.474 1852.089) 1.00 Coal 350.47 1852.09
1 0 1.14 16.55 2430.78 POINT (2375.067 456.607) 1.00 Coal 2375.07 456.61
2 0 60.00 305.00 2425.71 POINT (670.146 526.140) 1.00 Fault 670.15 526.14
3 1 60.00 305.00 2439.39 POINT (1410.631 1387.029) 1.00 Fault 1410.63 1387.03
4 2 60.00 305.00 2447.71 POINT (2034.324 2095.005) 1.00 Fault 2034.32 2095.00

Plotting the Orientations#

[22]:
fig, ax = plt.subplots(1, figsize=(10, 10))

interfaces.plot(ax=ax, column='formation', legend=True, aspect='equal')
interfaces_coords.plot(ax=ax, column='formation', legend=True, aspect='equal')
orientations.plot(ax=ax, color='red', aspect='equal')
plt.grid()
ax.set_xlabel('X [m]')
ax.set_ylabel('Y [m]')
ax.set_xlim(0, 3727)
ax.set_ylim(0, 2596)
[22]:
(0.0, 2596.0)
../../_images/getting_started_example_example21_39_1.png

GemPy Model Construction#

The structural geological model will be constructed using the GemPy package.

[23]:
import gempy as gp
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain`
WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.

Creating new Model#

[24]:
geo_model = gp.create_model('Model21')
geo_model
[24]:
Model21  2022-04-05 11:19

Initiate Data#

[25]:
gp.init_data(geo_model, [0, 3727, 0, 2596, 2400, 2475], [100, 100, 100],
             surface_points_df=interfaces_coords[interfaces_coords['Z'] != 0],
             orientations_df=orientations,
             default_values=True)
Active grids: ['regular']
[25]:
Model21  2022-04-05 11:19

Model Surfaces#

[26]:
geo_model.surfaces
[26]:
surface series order_surfaces color id
0 Fault Default series 1 #015482 1
1 Coal Default series 2 #9f0052 2
2 CoalTop Default series 3 #ffbe00 3

Mapping the Stack to Surfaces#

[27]:
gp.map_stack_to_surfaces(geo_model,
                         {
                          'Fault1': ('Fault'),
                          'Strata1': ('CoalTop', 'Coal'),
                         },
                         remove_unused_series=True)
geo_model.add_surfaces('Basement')
geo_model.set_is_fault(['Fault1'])
Fault colors changed. If you do not like this behavior, set change_color to False.
[27]:
order_series BottomRelation isActive isFault isFinite
Fault1 1 Fault True True False
Strata1 2 Erosion True False False

Showing the Number of Data Points#

[28]:
gg.utils.show_number_of_data_points(geo_model=geo_model)
[28]:
surface series order_surfaces color id No. of Interfaces No. of Orientations
0 Fault Fault1 1 #527682 1 29 3
1 Coal Strata1 1 #9f0052 2 81 2
2 CoalTop Strata1 2 #ffbe00 3 22 0
3 Basement Strata1 3 #728f02 4 0 0

Loading Digital Elevation Model#

[29]:
geo_model.set_topography(
    source='gdal', filepath=file_path + 'raster21.tif')
Cropped raster to geo_model.grid.extent.
depending on the size of the raster, this can take a while...
storing converted file...
Active grids: ['regular' 'topography']
[29]:
Grid Object. Values:
array([[  18.635     ,   12.98      , 2400.375     ],
       [  18.635     ,   12.98      , 2401.125     ],
       [  18.635     ,   12.98      , 2401.875     ],
       ...,
       [3722.04388298, 2571.13409962, 2462.30371094],
       [3722.04388298, 2581.08045977, 2463.51391602],
       [3722.04388298, 2591.02681992, 2464.8894043 ]])

Plotting Input Data#

[30]:
gp.plot_2d(geo_model, direction='z', show_lith=False, show_boundaries=False)
plt.grid()
../../_images/getting_started_example_example21_55_0.png
[31]:
gp.plot_3d(geo_model, image=False, plotter_type='basic', notebook=True)
../../_images/getting_started_example_example21_56_0.png
[31]:
<gempy.plot.vista.GemPyToVista at 0x1799e93afa0>

Setting the Interpolator#

[32]:
gp.set_interpolator(geo_model,
                    compile_theano=True,
                    theano_optimizer='fast_compile',
                    verbose=[],
                    update_kriging=False
                    )
Compiling theano function...
Level of Optimization:  fast_compile
Device:  cpu
Precision:  float64
Number of faults:  1
Compilation Done!
Kriging values:
                    values
range             4542.62
$C_o$           491318.33
drift equations    [3, 3]
[32]:
<gempy.core.interpolator.InterpolatorModel at 0x17997fa6520>

Computing Model#

[33]:
sol = gp.compute_model(geo_model, compute_mesh=True)

Plotting Cross Sections#

[34]:
gp.plot_2d(geo_model, direction=['x', 'x', 'y', 'y'], cell_number=[25, 75, 25, 75], show_topography=True, show_data=False)
[34]:
<gempy.plot.visualization_2d.Plot2D at 0x1799fb532b0>
../../_images/getting_started_example_example21_62_1.png

Plotting 3D Model#

[35]:
gpv = gp.plot_3d(geo_model, image=False, show_topography=True,
                 plotter_type='basic', notebook=True, show_lith=True)
../../_images/getting_started_example_example21_64_0.png
[ ]: